10 Gig SpeedTest server Intel Nuc

Recently a client testing their 5G solution came to me asking for a solution to testing speed from their CBRS/5G/802.11ax clients.  One of the requirements was it had to support greater than 1 gig speedtests as close to the devices as possible. This particular client has a small cell device which has room for a small form factor PC. The challenge was finding a small PC that could handle a 10 gig port.

In steps my buddy John from Columbus.  John is up on hardware more than I am.  After some talks, we settled on the following two pieces of hardware.

https://www.amazon.com/NUC8i7BEH-Quad-Core-i7-8559U-Bluetooth-Thunderbolt/dp/B07JJPF8MV/

https://www.amazon.com/Sonnet-Technologies-Thunderbolt-10GBASE-T-SOLO10G-TB3/dp/B07BZRK8R8/

Intel Nuc, Sonnet 10 Gig adaptor, Mikrotik HexS

Once we assembled this we need a router for the Internet and DHCP. We chose a RouterBoard hexS
https://www.ispsupplies.com/MikroTik-RouterBOARD-RB760iGS

As a not both of these will run off DC power.  The Nuc comes with a 19Volt power supply so if you are running Pure DC you may want to drop from, say a 24volt battery bank to 19 volt with a Meanwell converter.

The Software
Proxmox was installed on the Nuc.  Nothing crazy about this. Just make sure the thunderbolt adaptor is plugged in during install.  For our purposes, we are just using the 10 gig adaptor.  Proxmox recognizes the adaptor without a hiccup.

In some earlier blog posts I wrote about the self-hosted speedtests.
https://blog.j2sw.com/networking/self-hosted-speed-test/
https://blog.j2sw.com/xisp/self-hosted-speedtest/ (Patreon Subscription Required)

I installed the self-hosted speedtest under a Centos Minimal Install. Everything was put on a 172.16.x.x network.  This was done in order to prevent any conflicts with various types of Internet the Mikrotik may be plugged into.  By default, port 1 is set up to be a DHCP client.  In our setup, the Internet is the bottleneck, but we are not testing the Internet.  We are testing clients on the 5g/CBRS/802.11ax network. Our 10 gig port on the nuc will be plugged into a 10 gig switch at the small cell, and not into our routerboard.  The routerboard is just there to hand out DHCP and allow Internet access, if available.

 

 

 

 

Small cells and network as a Service (NaaS)

In this article, I am going to talk about how WISPs can monetize their networks in the ever-growing hype of 5G. Whether you think 5G is hype, or overblown from a technical aspect, you need to embrace the 5G wave of hype and use it to your advantage.

Many WISPs should be familiar with 5G in terms of how small cells work from a technical, physical, and a philosophical viewpoint. This knowledge is important, as outlined in Small Cells and hybrid networks for WISPs: Part 1, as well as making your network attractive for Network as a Service (NaaS).

Small cell digital signage and cameras

Wireless Service providers, especially ones with active community ties, have a unique advantage over the larger providers such as Verizon and AT&T when it comes to small cells.  Many of the local WISPs have the contacts to be able to put up small cell infrastructure in their coverage areas.   The provider does not have to own any licensed cellular spectrum to do this.  Many WISPs can make a business model with unlicensed (2.4 and 5GHZ) and CBRS band. The big benefit of this is if these providers build this infrastructure in mind of selling space to the larger carriers, then it can be a huge benefit.  The local ISP is now selling its infrastructure. Many ISPs would rather have one client paying $1000 a month and 10 clients paying $100 a month.  With this, you can do both.

How do you do this? In an upcoming podcast, I am going to talk with Tolly Marcus from Airpacket about how WISPs can “up their game” to design and engineer their networks to be in-line with what the larger carriers’ design.  This mindset will focus on the thinking processes  ISPs need to start implementing into their own networks.

One of the things the local provider can start looking at is small cell poles. Companies like Wytec International are implementing the next-generation of smart poles.  These poles tie cellular, CBRS, wifi, iOT, and other technologies in an unobtrusive design. The photo below is from this month’s edition of AGL Magazine.

Inside of a next-generation smart pole

By looking at this pole we can see the many compartments inside. Cities like this design as it covers ugly wires and just kind of blends in.  So, what does this have to do with the WISP? If a WISP were to design and engineer these to take into account the designs the carriers mentioned earlier require then the network can be sold as a service to them. Many factors and things need to be met, but it is doable. Again, the WISP does not have to operate in the Cellular bands in order to put up the pole infrastructure.

WISP puts up these throughout the town or city they can leave options for a carrier or multiple carriers to add their equipment into existing infrastructure.  The local ISP is selling capacity on a purpose-built network they have control over instead of the large carrier rolling over them.  The addition of small cells also opens up additional opportunities for the local ISP which otherwise might go to a 5G carrier.

Some of the opportunities to the local ISP can be
•Cellular Small Cells
•Digital Signage and displays
•Public Wi-Fi
•Survelliance
•IoT networks
•Meter Reading
•Informational Kiosks
These services are just a few of the ones an ISP with local connections can provide many services needed while selling to carriers who are already deploying small cells. 
In closing, if you are an ISP, especially a WISP use the 5G hype to further your business instead of trying to fight it. Adapt what you need to your business model to help provide the next generation of services.  Don’t get hung up on semantics.