5G now can even make weather forecasts less accurate

From the WTF files

https://www.wired.com/story/5g-networks-could-throw-weather-forecasting-into-chaos

On Capitol Hill Thursday, NOAA’s acting chief, Neil Jacobs, said that interference from 5G wireless phones could reduce the accuracy of forecasts by 30 percent. That’s equivalent, he said, to the quality of weather predictions four decades ago. “If you look back in time to see when our forecast scale was roughly 30 percent less than today, it was 1980,” Jacobs told the House Subcommittee on the Environment.

 

Non Podcast Flash briefing: streaming,5g, OSHA

Due to the 2019 Indiana ISP meeting, I have not had a chance to record a flash briefing this week.  Here are some things you need to know.

OSHA Willful fines violations
Lee over at TowerOneInc states OSHA has upped the fines on willful violations.

Streaming news
Chicago starts collecting Netflix taxes
https://www.dailymail.co.uk/news/article-7037573/Chicago-city-collect-Netflix-tax-online-services.html

Comcast future streaming after Hulu
https://www.lightreading.com/video/ott/comcast-still-has-big-streaming-dreams-/d/d-id/751505?

Telecom News
Frontier CEO says they are on the rebound
https://www.fiercetelecom.com/telecom/frontier-s-ceo-says-company-rebound-thanks-to-its-fiber-assets-better-customer-care

Sprint fires a volley at AT&T over 5G Evolution
https://www.telecomstechnews.com/news/2019/mar/12/sprint-att-nyt-ad-fake-5g-marketing/

 

States and Small Cell laws

http://www.ncsl.org/research/telecommunications-and-information-technology/mobile-5g-and-small-cell-legislation.aspx

Twenty-one state legislatures—Arizona, ColoradoDelawareFloridaHawaiiIllinoisIndianaIowaKansas, Michigan, MinnesotaMissouri, New Mexico, North CarolinaOhioOklahoma, Rhode Island, TennesseeTexasUtah, and Virginia—have enacted small cell legislation that streamlines regulations to facilitate the deployment of 5G small cells.

These laws all take into consideration the unique circumstances of their state and local environment, but baseline principles can be established and are consistent with wireless industry standards, including:

  • Streamlined applications to access public rights-of-way.
  • Caps on costs and fees.
  • Streamlined timelines for the consideration and processing of cell siting applications.

The Changing RF landscape for WISPs

Recently, there have been some discussions on Facebook about waining support for 2.4GHZ .  KP Performance recently published a Future of 5GHZ and beyond blog post. So why all this focus on 5GHZ and why are people forgetting about 2.4?

To answer this question, we need to update our thinking on the trends in networks, not just wireless networks.  Customers are demanding more and more speed. Network backbones and delivery nodes have to be updated to keep up with this demand. For anything but 802.11 wifi,2.4GHZ can’t keep up with the bandwidth needs.

One of the significant limitations of many 2.4 radios is they use frequency-hopping spread spectrum (FHSS) and/or direct-sequence spread spectrum (DSSS) modulation. Due to 2.4GHZ being older, the chipsets have evolved around these modulation methods because of age.  When you compare 2.4GHZ to 5GHZ radios running OFDM, you start to see a significant difference.  In a nutshell, OFDM allows for higher throughput. If you want to read all about the differences in the protocols here ya go: http://www.answers.com/Q/Difference_between_ofdm_dsss_fhss

Secondly, is the amount of spectrum available.  More spectrum means more channels to use, which translates into a high chance of mitigating interference. This interference can be self-induced or from external sources. To use an analogy, the more rooms a building has, the more simultaneous conversations can happen without noise in 2.4GHZ we only have 3 non-overlapping channels at 20mhz. Remember the part about more and more customers wanting more bandwidth? In the wireless world, one of the ways to increase capacity on your APs is to increase the channel width. Once you increase 2.4 to 30 or 40 MHz, you do not have much room to deal with noise because your available channels have shrunk.

One of the biggest arguments in support of using 2.4GHZ for a WISP environment is the physics.  Lower frequencies penetrate trees and foliage better. As with anything, there is a tradeoff.  As the signal is absorbed, so is the available “air time” for transmission of data.  As the signal travels through stuff, the radios on both sides have to reduce their modulation rates to deal with the loss of signal.  Lower modulation rates mean lower throughput for customers.  This might be fine for customers who have no other choice.  This thinking is not a long term play.

With LTE especially, traditional thinking is being uprooted.  Multiple streams to the customer as well as various paths for the signal due to antenna stacking are allowing radios to penetrate this same foliage just as well as a 2.4 signal, but delivering more bandwidth. These systems are becoming more and more carrier class.  As the internet evolves and becomes more and more critical, ISPs are having to step up their services.  The FCC  says the definition of broadband is at least 25 meg download. A 2.4 radio just can’t keep up in a WISP environment.  I am seeing 10 meg becoming the minimum customers want. Can you get by with smaller packages? Yes, but how long can you maintain that as the customer demand grows?

So what is the answer? Cell sizes are shrinking.  This is helping 2.4 hold on.  The less expensive radios can be deployed to less dense areas and still provide decent speeds to customers.  This same trend allows 5GHZ cells to be deployed as well. With less things to go through, 5GHZ can perform in modern networks at higher modulation rates.  Antenna manufacturers are also spending R&D to get the most out of their 5GHZ antennas. More money in the pipeline means stronger products. My clients are typically deploying 3.65 and 5GHZ on their towers.  LTE is changing RF WISP design and taking the place of 2.4 and 900.

Small Cells and hybrid networks for WISPs: Part 1

The never-ending goal of any Wireless Internet Service Provider (WISP) is how to get ever-increasing levels of bandwidth to clients. The always increasing demands, by customers,  on WISPs, and ISPs, in general, are becoming an everyday problem for many operators.  Building a business model on unlicensed spectrum can be a shaky foundation.  Interference and changing rules are just a few things which can influence how a WISP deploys services to a customer. Before we get into this, let’s take a step back and look at how many WISPs have been deploying services up until recently.

The “historical” WISP deployment has been to find the tallest structure around and locate some access points on it.  From there they try and reach out as far as they can to pick up customers.  This distance to the customer may be 3 miles, 5 miles, or even further depending on terrain. When an AP gets too full, you typically add a new one and make sure your antennas don’t overlap as much.   In the past installing customers at these distances has been fine for the 3, 5 and maybe even 10 meg packages which have been sold over the years.  However, the modern definition of broadband by the U.S. Federal Communications Commission (FCC) is 25 megabyte25 Megabits download by 3 Megabits upload. A good number of households are “getting by” with far less, but these customers need access to faster connections.

One way to meet this demand is to take a playbook from the cellular carriers. Small cells, or Micropops as many refer to them as can be a tremendous tool in your toolbox. For this series, I am going to refer to what I am talking about as a small cell and not a micro pop.  Why am I making this distinction? Small cells are something folks familiar with cellular operators understand.  This distinction may seem like such a small difference to you and me, but for the banker, or the city planner this could be a critical thing.  Many times you only have a small opening to present your case for deploying services to a neighborhood or other area.   This opening could be a twenty-minute meeting on a busy Monday or at a town hall meeting with 10 other things on the agenda.  Why not use terms which everyone is familiar with.

Small Cell deployment in a California Neighborhood

One way to increase data rates and modulation to clients is to decrease the distance they are from the Access Point (AP) and the number of clients on the AP.  Cleaner clients on an AP make for a better performing access point. The fewer obstructions you have to go through and even the less air you have to go through allows you to increase modulation to your clients on the AP.  If the clients are closer to the AP, they experience less interference. Imagine how many fewer things your AP hears if it is limited to a one-mile radius as opposed to a five-mile radius

So imagine your typical suburban neighborhood.  This may be a collection of houses in a subdivision within a 1-3 mile radius.

Due to houses, terrain, and trees, you may not be able to service these homes with the needed 25meg downloads they are expecting from the historical setup I mentioned above. The tower is just too far awa and is going through too many things to scale to customer demand.

This problem is where the neighborhood small-cell can come in and solve.  Due to land and Home Owner Association (HOA) policies putting up the typical WISP tower is not feasible.  Many homeowners do not want industrial things cluttering up their views, even if it means delivering the high-speed internet they are wanting. Towers can bring down property value.  In our photo above, several poles or small towers ranging from 40-80 feet would be inconspicuous enough to blend in with the neighborhood.

Small cell on existing pole

Each of these poles may service as many as 20-30 homes. This small customer count per AP keeps the customer count on the AP low, so you are not oversubscribing the Access Points, and also allows each customer to have the max signal to their nearest AP. Due to customers reliance on speed test servers, being able to provide what you sell is critical.  If you are selling 200 meg packages, then the customer should be able to run a 200 meg speed test. In an earlier article, I talk about the problems with speed test servers, but your customers want to get what they expect.

So now that we know why small cells are essential to a WISP, our next articles in this series will focus on the technical aspects of small cell, integrating them into your existing infrastructure, and showing deploying them is not really that scary, hard or expensive.