Podcast: Cameron Kilton from Alpha and I talk about LTE

Cameron Kilton from Alpha Wireless and i sit down at the 2019 Indiana ISP meeting and talk about LTE and Wireless operators.  Pardon the rough beginning. the room we were in had a flickering light that took me by surprise near the beginning and messed with my rhythm.

Cameron’s Twitter
https://twitter.com/cameronkilton

Alpha Wireless
https://alphawireless.com/

ePMP 3000: How to test MU-MIMO

http://community.cambiumnetworks.com/t5/ePMP-3000-MU-MIMO/ePMP-3000-How-to-test-MU-MIMO/m-p/102882

Intial MU-MIMO testing after deployment can be performed through the built-in Wireless Link Test Tool.On Wirless link Test page new option has been added for ePMP3000 – Mode. Wireless Link Test can be started to Single SM or to Dual SMs simultaneously.

ePMP eDetect

One of the biggest tasks on a wireless AP is finding clean channels.  Once you find those clean channels, making sure you stay on a clean channel is the next task. ePMP has a feature under tools called eDetect. One of the things this can do is give you an idea of how many devices are on a given frequency.

The ePMP AP you see above is on a 20mhz channel, which is why many home routers and other devices are showing up.  If this was on a cleaner frequency it would look like the following.

While eDetect is not a replacement for spectrum analysis, it can give you a pretty good idea of what’s using a particular frequency.  Please note, you see the most things on 20MHZ channels because that is what most home routers are set to. If you would like to read up on eDetect in more detail go here: https://community.cambiumnetworks.com/t5/ePMP-Configuration-Management/ePMP-Tools-eDetect-Explained/td-p/42997

PTp550 Throughput with RF elements horns

Distance:5.03 Miles
Downlink RSSI: -59
ChannelWidth: 40MHZ
DownlinkSNR:33bB
Antennas: RF elements Ultra Horns
Downlink Ratio set to 75/25

Question: Why are you not using channel bonding? 
A)Having some reliability issues with channel bonding at the moment on the 550 platform.

Question: What was the link like before the horns?
Check out this previous post. (pictures are screwed up for now): http://www.mtin.net/blog/the-addition-of-rf-elements-horns-to-a-ptp550-link/

 

 

Form 477 Resources

https://transition.fcc.gov/Forms/Form477/477inst.pdf
lots of good information in here


https://www.fcc.gov/general/broadband-deployment-data-fcc-form-477

Who Files What?

  • All facilities-based broadband providers are required to file data with the FCC twice a year (Form 477) on where they offer Internet access service at speeds exceeding 200 kbps in at least one direction.
  • Fixed providers file lists of census blocks in which they can or do offer service to at least one location, with additional information about the service.*
  • Mobile providers file maps of their coverage areas for each broadband technology (e.g., EV-DO, HSPA, LTE).  See Mobile Deployment Data.

https://www.fcc.gov/general/form-477-orders-and-releases


https://www.fcc.gov/economics-analytics/industry-analysis-division/form-477-resources/generating-fixed

Generating Fixed Broadband Deployment Data for FCC Form 477


https://geobuffer.com/
Turn US addresses into coordinates.

The Changing RF landscape for WISPs

Recently, there have been some discussions on Facebook about waining support for 2.4GHZ .  KP Performance recently published a Future of 5GHZ and beyond blog post. So why all this focus on 5GHZ and why are people forgetting about 2.4?

To answer this question, we need to update our thinking on the trends in networks, not just wireless networks.  Customers are demanding more and more speed. Network backbones and delivery nodes have to be updated to keep up with this demand. For anything but 802.11 wifi,2.4GHZ can’t keep up with the bandwidth needs.

One of the significant limitations of many 2.4 radios is they use frequency-hopping spread spectrum (FHSS) and/or direct-sequence spread spectrum (DSSS) modulation. Due to 2.4GHZ being older, the chipsets have evolved around these modulation methods because of age.  When you compare 2.4GHZ to 5GHZ radios running OFDM, you start to see a significant difference.  In a nutshell, OFDM allows for higher throughput. If you want to read all about the differences in the protocols here ya go: http://www.answers.com/Q/Difference_between_ofdm_dsss_fhss

Secondly, is the amount of spectrum available.  More spectrum means more channels to use, which translates into a high chance of mitigating interference. This interference can be self-induced or from external sources. To use an analogy, the more rooms a building has, the more simultaneous conversations can happen without noise in 2.4GHZ we only have 3 non-overlapping channels at 20mhz. Remember the part about more and more customers wanting more bandwidth? In the wireless world, one of the ways to increase capacity on your APs is to increase the channel width. Once you increase 2.4 to 30 or 40 MHz, you do not have much room to deal with noise because your available channels have shrunk.

One of the biggest arguments in support of using 2.4GHZ for a WISP environment is the physics.  Lower frequencies penetrate trees and foliage better. As with anything, there is a tradeoff.  As the signal is absorbed, so is the available “air time” for transmission of data.  As the signal travels through stuff, the radios on both sides have to reduce their modulation rates to deal with the loss of signal.  Lower modulation rates mean lower throughput for customers.  This might be fine for customers who have no other choice.  This thinking is not a long term play.

With LTE especially, traditional thinking is being uprooted.  Multiple streams to the customer as well as various paths for the signal due to antenna stacking are allowing radios to penetrate this same foliage just as well as a 2.4 signal, but delivering more bandwidth. These systems are becoming more and more carrier class.  As the internet evolves and becomes more and more critical, ISPs are having to step up their services.  The FCC  says the definition of broadband is at least 25 meg download. A 2.4 radio just can’t keep up in a WISP environment.  I am seeing 10 meg becoming the minimum customers want. Can you get by with smaller packages? Yes, but how long can you maintain that as the customer demand grows?

So what is the answer? Cell sizes are shrinking.  This is helping 2.4 hold on.  The less expensive radios can be deployed to less dense areas and still provide decent speeds to customers.  This same trend allows 5GHZ cells to be deployed as well. With less things to go through, 5GHZ can perform in modern networks at higher modulation rates.  Antenna manufacturers are also spending R&D to get the most out of their 5GHZ antennas. More money in the pipeline means stronger products. My clients are typically deploying 3.65 and 5GHZ on their towers.  LTE is changing RF WISP design and taking the place of 2.4 and 900.

Calea and the ISP

The Communications and Law Enforcement Act (CALEA) passed in 1994 is a piece of legislation every U.S. ISP should know about and be in compliance with.  If for the simple fact the government can levy heavy fines if you aren’t compliant.

For those of you wanting some background please follow these links:
https://en.wikipedia.org/wiki/Communications_Assistance_for_Law_Enforcement_Act

https://www.fcc.gov/public-safety-and-homeland-security/policy-and-licensing-division/general/communications-assistance

First of all CALEA isn’t simply sticking wireshark onto your network and sending a packet dump to a law enforcement agency. It is much more complicated than that. You have several things which the CALEA standard addresses.

1.The ability to send multiple streams, in real time, to different law enforcement agencies.
2.The ability to not interrupt the connection to a person of interest.  In other words you don’t want to interrupt their connection to insert a piece of hardware.
3.The ability to provide just the information on the warrant.  Too much information can actually violate the court order.
4.There is a difference between a typical “request for information” warrant and a CALEA request.  These are not the same.  CALEA almost always comes from a federal agency. They are expecting you to be compliant with CALEA.

Now, here is where things get a little subjective.  The FBI has https://askcalea.fbi.gov/ which is linked from the above fcc.gov web-site.  The askcalea web-site has not been updated since 2011.  The service provider login and service provider registration simply does not work. The information about CALEA is pretty outdated.

So what does this mean for you as a small ISP? Stay tuned for more information.

Flash Briefing: April 29. Spectrum, IoT, WPA compromises

Spectrum use Article
https://www.networkworld.com/article/3343040/wireless-spectrum-shortage-not-so-fast.html
The wireless industry has always had to deal with regular (and alarming) pronouncements that we’re somehow running out of radio spectrum. We’re not. But the misconception regardless gives many IT and network managers pause. 

It does not mention WiSPs, but is a perspective nonetheless.

IoT Links
How many of you are focusing on Internet of Everything (IoT)? I have posted some links to how healthcare and others are using IoT to further their business.  As a service provider, you should be coming up with an IoT strategy.

https://www.entrepreneur.com/article/331792
https://www.worldbuild365.com/blog/internet-of-things-iot-the-future-of-smart-roads-skRTWO

WPA Compromises
https://www.theregister.co.uk/2019/04/11/bughunters_punch_holes_in_wpa3_wifi_security/

Microsoft and IPV6

I have written about IPV6 lately and Microsoft has published a post where they are moving their internal network to an IPV6 only network.

Microsoft works toward IPv6-only single stack network

TeamArin at CanWISP
https://teamarin.net/2019/04/02/how-arin-can-help-wireless-internet-service-providers-wisps/