Small cells and network as a Service (NaaS)

In this article, I am going to talk about how WISPs can monetize their networks in the ever-growing hype of 5G. Whether you think 5G is hype, or overblown from a technical aspect, you need to embrace the 5G wave of hype and use it to your advantage.

Many WISPs should be familiar with 5G in terms of how small cells work from a technical, physical, and a philosophical viewpoint. This knowledge is important, as outlined in Small Cells and hybrid networks for WISPs: Part 1, as well as making your network attractive for Network as a Service (NaaS).

Small cell digital signage and cameras

Wireless Service providers, especially ones with active community ties, have a unique advantage over the larger providers such as Verizon and AT&T when it comes to small cells.  Many of the local WISPs have the contacts to be able to put up small cell infrastructure in their coverage areas.   The provider does not have to own any licensed cellular spectrum to do this.  Many WISPs can make a business model with unlicensed (2.4 and 5GHZ) and CBRS band. The big benefit of this is if these providers build this infrastructure in mind of selling space to the larger carriers, then it can be a huge benefit.  The local ISP is now selling its infrastructure. Many ISPs would rather have one client paying $1000 a month and 10 clients paying $100 a month.  With this, you can do both.

How do you do this? In an upcoming podcast, I am going to talk with Tolly Marcus from Airpacket about how WISPs can “up their game” to design and engineer their networks to be in-line with what the larger carriers’ design.  This mindset will focus on the thinking processes  ISPs need to start implementing into their own networks.

One of the things the local provider can start looking at is small cell poles. Companies like Wytec International are implementing the next-generation of smart poles.  These poles tie cellular, CBRS, wifi, iOT, and other technologies in an unobtrusive design. The photo below is from this month’s edition of AGL Magazine.

Inside of a next-generation smart pole

By looking at this pole we can see the many compartments inside. Cities like this design as it covers ugly wires and just kind of blends in.  So, what does this have to do with the WISP? If a WISP were to design and engineer these to take into account the designs the carriers mentioned earlier require then the network can be sold as a service to them. Many factors and things need to be met, but it is doable. Again, the WISP does not have to operate in the Cellular bands in order to put up the pole infrastructure.

WISP puts up these throughout the town or city they can leave options for a carrier or multiple carriers to add their equipment into existing infrastructure.  The local ISP is selling capacity on a purpose-built network they have control over instead of the large carrier rolling over them.  The addition of small cells also opens up additional opportunities for the local ISP which otherwise might go to a 5G carrier.

Some of the opportunities to the local ISP can be
•Cellular Small Cells
•Digital Signage and displays
•Public Wi-Fi
•Survelliance
•IoT networks
•Meter Reading
•Informational Kiosks
These services are just a few of the ones an ISP with local connections can provide many services needed while selling to carriers who are already deploying small cells. 
In closing, if you are an ISP, especially a WISP use the 5G hype to further your business instead of trying to fight it. Adapt what you need to your business model to help provide the next generation of services.  Don’t get hung up on semantics.

Podcast: Cameron Kilton from Alpha and I talk about LTE

Cameron Kilton from Alpha Wireless and i sit down at the 2019 Indiana ISP meeting and talk about LTE and Wireless operators.  Pardon the rough beginning. the room we were in had a flickering light that took me by surprise near the beginning and messed with my rhythm.

Cameron’s Twitter
https://twitter.com/cameronkilton

Alpha Wireless
https://alphawireless.com/

CBRSCertified Professional Installer (CPI Package)

This six-module program, developed by Google, will train you to be a Certificated Professional Installer (CPI) of radios which utilize the Citizens Broadband Radio Service (CBRS) band to provide communications infrastructure. Upon completing the course and passing the online certification exam*, you will receive your CPI credentials* and your information will be automatically registered with WInnForum*.

https://www.coursera.org/learn/google-cbrs-cpi-training

The Changing RF landscape for WISPs

Recently, there have been some discussions on Facebook about waining support for 2.4GHZ .  KP Performance recently published a Future of 5GHZ and beyond blog post. So why all this focus on 5GHZ and why are people forgetting about 2.4?

To answer this question, we need to update our thinking on the trends in networks, not just wireless networks.  Customers are demanding more and more speed. Network backbones and delivery nodes have to be updated to keep up with this demand. For anything but 802.11 wifi,2.4GHZ can’t keep up with the bandwidth needs.

One of the significant limitations of many 2.4 radios is they use frequency-hopping spread spectrum (FHSS) and/or direct-sequence spread spectrum (DSSS) modulation. Due to 2.4GHZ being older, the chipsets have evolved around these modulation methods because of age.  When you compare 2.4GHZ to 5GHZ radios running OFDM, you start to see a significant difference.  In a nutshell, OFDM allows for higher throughput. If you want to read all about the differences in the protocols here ya go: http://www.answers.com/Q/Difference_between_ofdm_dsss_fhss

Secondly, is the amount of spectrum available.  More spectrum means more channels to use, which translates into a high chance of mitigating interference. This interference can be self-induced or from external sources. To use an analogy, the more rooms a building has, the more simultaneous conversations can happen without noise in 2.4GHZ we only have 3 non-overlapping channels at 20mhz. Remember the part about more and more customers wanting more bandwidth? In the wireless world, one of the ways to increase capacity on your APs is to increase the channel width. Once you increase 2.4 to 30 or 40 MHz, you do not have much room to deal with noise because your available channels have shrunk.

One of the biggest arguments in support of using 2.4GHZ for a WISP environment is the physics.  Lower frequencies penetrate trees and foliage better. As with anything, there is a tradeoff.  As the signal is absorbed, so is the available “air time” for transmission of data.  As the signal travels through stuff, the radios on both sides have to reduce their modulation rates to deal with the loss of signal.  Lower modulation rates mean lower throughput for customers.  This might be fine for customers who have no other choice.  This thinking is not a long term play.

With LTE especially, traditional thinking is being uprooted.  Multiple streams to the customer as well as various paths for the signal due to antenna stacking are allowing radios to penetrate this same foliage just as well as a 2.4 signal, but delivering more bandwidth. These systems are becoming more and more carrier class.  As the internet evolves and becomes more and more critical, ISPs are having to step up their services.  The FCC  says the definition of broadband is at least 25 meg download. A 2.4 radio just can’t keep up in a WISP environment.  I am seeing 10 meg becoming the minimum customers want. Can you get by with smaller packages? Yes, but how long can you maintain that as the customer demand grows?

So what is the answer? Cell sizes are shrinking.  This is helping 2.4 hold on.  The less expensive radios can be deployed to less dense areas and still provide decent speeds to customers.  This same trend allows 5GHZ cells to be deployed as well. With less things to go through, 5GHZ can perform in modern networks at higher modulation rates.  Antenna manufacturers are also spending R&D to get the most out of their 5GHZ antennas. More money in the pipeline means stronger products. My clients are typically deploying 3.65 and 5GHZ on their towers.  LTE is changing RF WISP design and taking the place of 2.4 and 900.